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Introduction

The primary purposes of this article are twofold:
(1) to describe work done in the 1970s on the spon-
taneous generation of musical structures with a
computer music system by using a detailed analy-
sis of a performer’s brainwaves, and (2) to speculate
on extensions of these ideas. Aside from its his-
torical interest, this work has resulted in ideas for
high-level musical input structures—new ways of
playing intelligent, programmable musical instru-
ments. Furthermore, my own work in biofeedback
and the arts, begun over twenty years ago, is experi-
encing a revival due to the fact that advances in
technology now permit realization of musical con-
cepts in performance that depend on complex, real-
time analysis of electroencephalogram (EEG) sig-
nals, previously achievable only with cumbersome,
non-real-time, laboratory-bound methods. Conse-
quently, ideas that were impractical when they
were proposed many years ago are now practical,

It is beyond the scope of this article to include an
explanation of the principles and techniques of EEG
analysis on which much of the work depends. I re-
fer the reader to a recent monograph entitled Ex-
tended Musical Interface with the Human Nervous
System: Assessment and Prospectus (Rosenboom
1990). In this monograph, a great deal more infor-
mation is presented concerning (1) biofeedback
modeling and its history both inside and outside of
the arts; (2) the varieties of bioelectromagnetic phe-
nomena that have been explored in feedback para-
digms; (3) a detailed model for classification of EEG
phenomena with particular emphasis on event-
related potentials (ERPs) and their significance
to the study of the mechanisms of attention in
musical experience; and (4) applications of new
technology for sensing biomagnetism, such as super-
conducting quantum interference devices (SQUIDs),
multichannel brain imaging, and other develop-
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ments in hardware and software arenas. In this
paper | will concentrate on algorithms developed to
facilitate the evolution in performance of a musical
structure in response to shifts in selective atten-
tion, as evidenced by phenomena detected in the
electroencephalogram (EEG).

Background

In a now famous paper published in 1934 the pio-
neering physiologists Adrian and Mathews reported
on experiencing a translation of the human electro-
encephalogram (EEG) into audio signals. While lis-
tening to his own alpha rhythm presented through
a loudspeaker, Adrian tried to correlate the subjec-
tive impression of hearing the alpha come and go
with the activity of looking or not looking with his
eyes (Adrian and Mathews 1934). Inevitably, artists
with an experimental bent would come to apply
this—and subsequent developments in brain sci-
ence—to both artistic production and research

in artistic perception. During the past 25 years,
composers and artists like Alvin Lucier, Richard
Teitelbaum, myself, and numerous others have
produced major works of music, as well as visual
and kinetic art using EEG and other bioelectronic
signals. Lucier’s 1945 work Music for Solo Per-
former achieved a direct mapping of a soloist’s al-
pha rhythms onto the orchestrational palette of a
percussion ensemble (Lucier 1976, 1982; Lucier and -
Simon 1980). Teitelbaum’s Organ Music and In
Tune, both realized in 1968, added heartbeat and
breath sounds—sensed with contact microphones—
to EEG signals in the creation of an electronic mu-
sic texture (Teitelbaum 1976). My own work with
brainwaves began with experiments in musical pro-
duction using alpha rhythms and explorations of
the relation of alpha wave production to music per-
ception and the various states of awareness and
consciousness associated with music performance.
Initially, this took place in 1969 in the laboratory of
Les Fehmi, an early biofeedback researcher at the
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Fig. 1. System configura-
tion diagram for the au-
thor’s 1970 installation/
performance/participation
work, Ecology of the Skin.
DIF AMP = differential
brainwave amplifier, LPF

= lowpass filter, BPF =
bandpass filter, ENV FOL
= envelope follower,
SHMT TRIG = Schmit
trigger circuit, E/UT =
events per unit time, DEC
LOGIC = modular logic

State University of New York at Stony Brook, after
a suggestion by E. E. Coons of New York Univer-
sity. I developed an environmental demonstration/
participation/performance event entitled Ecology
of the Skin, in 1970-71. It involved biofeedback
monitoring of brainwaves and heart signals from
performers and audience members, their translation
into a musical texture, along with synchronous,
electronic stimulation of visual phosphenes at cere-
bral light show viewing stations for the audience.
The electronic setup for this work included the
capability of adjusting the degree of brainwave
control over sound for each of ten participants®
according to a simple statistical measure—the
amount of time spent per minute producing alpha
waves. It is shown in Fig. 1.

My work led in 1972 to the creation of the Labo-
ratory of Experimental Aesthetics at York Uni-
versity in Toronto, where the intent was to study
information processing modalities of the nervous
system in relation to aesthetic experience and states
of consciousness within an environment of artistic
production. Work was carried out there for a num-
ber of years under sponsorship by York University,
the Canada Council Explorations Programme, and
the Aesthetic Research Centre of Canada. Many
individuals carried out experiments or produced
works of art there over a seven-year period. Some of
these are documented in my book Biofeedback and

circuit system, D/A =
digital-to-analog conver-
tors, CUR LIM = current
limiting circuit, CMRA =
video camera.

the Arts, Results of Early Experiments (Rosenboom
1976a). They included works involving music, vi-
sual arts, dance, and kinetic arts.

Another early experimenter was Manfred Eaton,
who carried out experiments in music and bio-
electric phenomena at the ORCUS Research Center
in Kansas City during the 1960s and early 1970s.
Eaton described extensive explorations in applying
various, bioelectrically derived signals to artistic
projects and the study of aesthetic responses to
stimuli. These signals resulted from measuring the
EEG, pulse rate, respiration, galvanic skin resis-
tance (GSR), blood flow volume, and the electrocar-
diogram (EKG). A variety of multisensory display
systems were devised to follow changes in these
measurements. Eaton also speculated on the possi-
bility of employing sensory-evoked responses, re-
quiring more sophisticated analysis capability than
what was readily available at that time in order to
generate complex patterns for music, kinetic arts,
and television. '

Many of the earliest experiments involved a kind
of simple parametric following in which some as-
pect of sound or a visual display is made to track
changes detected in a bioelectronic signal. It soon
became apparent, however, that data from deeper
statistical analyses, particularly of EEG trends,
would provide more meaningful signals with which
to control musical forms. In Portable Gold and
Philosophers’ Stones {1972) (Rosenboom 1976a,
1976c), a battery of such techniques was employed
by a technician, who performed with the analysis
equipment, along with an ensemble of four biofeed-
back musicians. Most significant among these was
a measure of the coherence time of EEG waveforms
in various spectral bands, extracted by means of the
autocorrelation function. This determined the range
of direct control over elements of the sound texture
given to each performer. As coherence times for a
particular performer increased, the degree of influ-
ence over the sound texture allotted to that per-
former also increased. Cross-correlations on signals
from pairs of performers were sometimes used as
well. Fourier analysis was used to extract EEG power
spectra. These were mapped onto a series of weights
applied to a group of resonant bandpass filters, in a
device known as a holophone. This helped deter-
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Fig. 2. System configura-
tion diagram for the au-
thors Portable Gold and
Philosopher’s Stones
(Music from Brains in
Fours) (1972).
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mine the spectral composition of the music, as
shown in Fig. 2.

Measures of body temperature and GSR were also
used to direct the tonality of the musical texture.
Subsequent to this, extensive work was carried out
in our laboratory to explore how analysis of event-
related potentials (ERP) might both elucidate pro-
cesses of musical perception and cognition—par-
ticularly with respect to contemporary styles—and
be applied to musical production in a feedback
paradigm. Unlike the coherent EEG waves—known
as alpha, beta, theta, and delta—ERPs are transient,
nonrepetitive waveforms associated with the pre-
sentation of clearly defined stimulus events. Com-
plex statistical procedures, such as signal averaging,
template matching, and adaptive filtering are re-
quired to extract them from the ongoing EEG. ERPs
contain a number of peaks, the size and latency
of which can provide evidence for the occurrence of
brain processes associated with hierarchical infor-

OUTPUT (OR MULTI-CHANNEL DISTRIBUTION)

HOLOPHONE

mation processing. These include various atten-
tional gating effects, shifts in selective attention,
degrees of recognition or surprise contained in a
stimulus, and effects leading to the formation of a
mental image and memory engram associated with
the event. Some of the peaks are exogenous in ori-
gin, varying with the physical aspects of the stimu-
lus; some are endogenous in origin, varying with
psychological or cognitive processes.

Many other art works were produced and re-
search programs carried out during the 1970s [e.g.,
Grayson 1973; Malina 1974; Rosenboom 1975,
1976a, 1976b, 1976¢, 1977a, 1977b, 1984; Paul
1986). For me, the culmination of the musical ap-
plications was the production of On Being Invis-
ible in 1976-77. In this work (described in detail
below), complete musical forms are constructed as
a result of the self-organizing dynamics of a system
in which both ongoing EEG parameters and ERPs—
indicative of shifts in selective attention on the
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part of a solo performer—are analyzed by computer
and used to direct the stochastic evolution of an
adaptive interactive electronic music system.

On Being Invisible: Using ERPs to Build Formal
Musical Holarchies in Real-Time

On Being Invisible is a self-organizing, dynamical
system, not a fixed musical composition. The title
refers to the role of the individual within an evolv-
ing, dynamical environment--~one who makes deci-
sions concerning when and how to be a conscious
initiator of action and when simply to allow his/her
individual, internal dynamics to co-evolve within
the macroscopic dynamics of the system as a whole.
Consequently, the work is ongoing. Within the cor-
pus of my music, the title labels a period of work
with these ideas from about 1976 to 1979. Recently
I have begun new work with this system, titling it
On Being Invisible II. Note that I've invoked the
word holarchy as an alternative to hierarchy in dis-
cussing musical form. It is intended to encourage a
way of thinking that gives equal weight to both the
top down and bottom up views of how forms arise
and evolve. Personal discussions with colleagues,
notably J. Tenney and the writings of E. Jantsch
have influenced this concept.

The Basic Paradigm: Attention-dependent Sonic
Environments

One of the primary objectives in this research was
to achieve the technical capability necessary to
create an attention-dependent sonic environment, I
wanted to create a situation in which the syntax of
a sonic language orders itself according to the man-
ner in which sound is perceived. In a sense, On
Being Invisible has at the core of its structure a
model for a way in which language can be acquired.
It produces the direct result that aspects of atten-
tion—as reflected in electroencephalographic sig-
nals—have the immediate physical consequence

of changing some aspect of the sound and, more
importantly, affecting the way in which the sonic
stream orders itself in time on several hierarchical
levels. As a-biofeedback model, it involves with

Fig. 3. Statistical distri-
bution of behaviors: goal

state (a) and behavior dis-
tribution with lateral inhi-
bition (b).
(a) ' Goal state (mean)
Achievement
{variance)
‘ Inhibitory function
(b) Behavior distribution with lateral inhibition
State

boundaries

Sum of two Gaussians

what might be called “the cybernetics of language
and cognition.”

In this feedback model, the desired goal state for
a self-organizing process is represented as a statis-
tical mean of system behaviors, while the variance
of actual behaviors around the mean represents the
level of achievement of the goal state, A lateral in-
hibition function, separating neighboring goal states
that might otherwise be generalized, is produced by
summing a narrowly tuned, positive Gaussian func-
tion with a broadly tuned, negative one, as can be
seen in Fig. 3. This idea was originally suggested by
Heinz von Foerster (1981). °

The exact shape of these Gaussian functions is
associated with the degree of uncertainty involved
in representing the goal states. Thus, a stochastic
shaping of the unfolding language structure results.

The Early Versions

In each version of On Being Invisible, a system
was employed that contained the following major
components:

1. A musical-structure-generating mechanism
coupled to a sound synthesis system

2. A model of musical perception that detects
and makes predictions about the perceptual
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Fig. 4. On Being Invisible
(1976). Schematic diagram
of the early, nonbrainwave
version.
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effect of various phenomena in an unfolding
musical structure

3. A perceiving, interacting entity (i.e., human
performer)

4. An input analysis system for detecting and
analyzing bioelectromagnetic and other in-
put signals N

5. A structure-controlling mechanism that di-
rects (1) and updates (2) in response to corre-
spondences in information from (4) and (2)

An early, prebrainwave version of On Being In-
visible is worth noting for its relevance to evolving
systems concepts. Its functional diagram is shown
in Fig. 4.

A structure-controlling feedback loop is estab-
lished here that accepts occasional influence from
outside the loop in the form of vocal sounds. To be-

gin with, two Buchla Music Easel synthesizers con-
stitute the structure-generating mechanism and
sound synthesis system. Structure generation is
contained in the qualities of the patch setup in
each synthesizer, with the most important struc-
tural information residing in short-segment, preset
sequencers and pseudo-random pattern generators,
which were implemented with feedback shift regis-
ters. The results are combined and sent to a time-
delay mechanism. Both the delayed and nondelayed
signals are added to vocal sounds in a connection
and sumining matrix (mixer), and sent to the input
analysis.system. The analysis consists of perform-
ing an ongoing autocorrelation or cross-correlation
on the audio signals from this mixer, chosen in
real-time by the performer. This analysis system
also served as the structure-controlling mechanism.
The correlation function could be scanned repeti-
tively along its delay axis and read out as a series
of points converted into voltage values. These
voltages were used to control relatively global pa-
rameters in the patch programs set up, on the two
synthesizers.

The human performer acted both as the perceiv-
ing, interacting entity and as the model of musical
perception that made predictions. The entire sys-
tem was activated and directed by vocal sounds.
The performer watched a continuously updated dis-
play of the chosen correlation function, very often
the autocorrelation function of the voice itself. He
or she was required to learn through practice the
ability to predict the form of the correlation func-
tion that would result from a particular type of vo-
cal sound—such as smooth er raspy—containing
particular harmonic or noise contents. This would
stimulate and shape the behavior of the structure-
generating and synthesis setup. Particular relation~
ships among the forms of correlation functions,
combined with certain behaviors of the synthesis
patch and timings in the delay system, could pro-
duce life-like sound forms. These would often per-
sist for some time, then seemingly spontaneously
evolve their morphologies in a highly organic man-
ner. In a sense, the results of analyzing vocal wave-
shapes would determine the content of a long se-
quencer, which in turn directed global parameters
in a synthesis patch.
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Several important systems principles can be seen
upon closer analysis of the schematic for this piece
in Fig. 4. First, there is a primary feedback loop ca-
pable of a certain degree of self-organization. The
system’s long-term memory resides in the intercon-
nections of elements constituting the patch and, to
a lesser extent, in patterns resident in sequencers.
Short-term memory, which is most important for
the maintenance of musical patterns, resides in two
places—the delay system and the correlation func-
tion. Note that both of these involve time delay and
show striking similarities. The delay system in-
volves recombination of original and time-delayed
versions of the musical sound. The correlation
function involves integrating the results of com-
parisons of successively delayed time-slices of a
signal with the current, incoming signal. In both
systems, repetitive features of a signal—which fit
neatly into multiples of the delay interval—will pe-
riodically reinforce each other. Self-maintaining
patterns can result, the viability of which depends
upon both the coherence of the signals being corre-
lated and the stability of musical patterns being de-
layed. With proper tuning of delay parameters and
integration time constants, most resulting musical
patterns will last for a while and then decay. This
decay is due to inherent instabilities, irregularities,
or lack of long-term coherence. To produce a pre-
sentation for an audience, activity from nearly any
set of points around the loop could theoretically be
tapped and projected by means of amplifiers, loud-
speakers, and possibly visual displays.

The entire configuration acts like a nonequilib-
rium system capable of organizing itself into pat-
terns with relatively short-term stability and subject
to pattern evolution by means of energy exchanges
with its environment. These exchanges take the
form of perturbations introduced by the vocal per-
former from outside the loop, whose signals—once
analyzed by the system’s short-term correlation
memory inside the loop—push the internal pattern
evolution in new directions.

At the time of its creation, this system was con-
ceived as an experiment in alternative performance
input structures—a new way of playing a synthesis
system. This way of developing an improvisation-
ally articulated relationship with a complex ac-

companying system was extremely rewarding. The
piece was first performed at The Music Gallery in
Toronto on 13 March, 1976.

Performance systems of this kind exhibit very
different behaviors from what we normally expect

. from musical instruments. Most instruments are

nonevolving equilibrium systems, or at least the re-
sult of attempts to create them. These instruments
are constructed so as to tend towards an equilibrium
state represented by an even distribution of poten-
tial energy in an elastic medium, like the tension
in a string or drum head. A performer’s actions are
to disturb this state, moving the system far from an
even distribution of tension, and then to observe,
listen to, and sometimes try to influence the way in
which the system returns to its equilibrium state of
even tension distribution. Along the path of this re-
turn to equilibrium, some of the potential energy
gained by the disturbance from outside the system
is dissipated in the production of sound waves.
Wind instruments are somewhat different, in that
they contain no potential energy until it is applied
from outside in the form of air pressure. They then
channel the dissipation of this energy in resonant,
usually harmonic, modes producing the compres-
sions and rarefactions of sound waves.

Instrument structures of the type used in On Be-
ing Invisible, on the other hand, are self-organizing,
evolving, nonequilibrium entities. Performance
techniques for them tend more along the lines of
developing creative influences on their behavior
and evolution, rather than traditional technical,
physiological, and proprioceptive mastery. Mastery
of musical thinking, on the other hand, becomes all
the more essential in this new kind of performance.
There is no score to guide the performer’s actions.
Instead, there is a co-evolution of the performer
with his or her performance system, the structure
of which is an extension of his or her holarchic
musical mind and body. In subsequent versions
of On Being Invisible, bioelectromagnetic inputs
were added and the technology changed. Many of
the general principles of this performance paradigm
continued to be applied, however.

Figure 5 shows a schematic for the next version
of On Being Invisible, created in 1976~77 and first
performed at The Music Gallery in Toronto on
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Fig. 5. On Being Invisible
(1976=77). Schematic
diagram.
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12 February, 1977. In this version, the feedback
loop encloses the perceiving, interacting entity—
the human performer. Energy and information ex-
changes with the environment take place through
the performer, and the sound output is processed by
the performer inside the primary loop. The model
of musical perception, the structure-generating
mechanism, and the structure-controlling mecha- -
nism all reside inside the software of a minicom-
puter. The input analysis system is comprised of a
correlation function computer and Fourier analyzer
that produce and continuously update displays of
correlation functions along with power density
spectra and phase plots, Changes in the values of
individual points along the frequency axes of the
power density and phase plots can also be generated
at varying voltages. In this way the highly selective
amplitude envelopes of any desired frequency com-
ponent in the signal can be made available to the
computer or synthesis system. One or two channels
of brainwave inputs were derived from some com-
bination of electrodes located at the vertex and oc-
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cipital or temporal lobes of the performer’s brain.
Usually, the raw EEG was input to the analysis
system, Sometimes, however, theta-, alpha-, and
beta-band fAilters and envelope followers were used
independently. The outputs of these were patched
into the synthesis system to derive rhythmically
synchronous triggers for sound events. Capability
of feeding sounds into the analysis system from
the voice or small acoustic instruments—monkey
drums, Tibetan cymbals, snake charmer’s pipes,
etc.—was maintained. A keyboard array of pressure
sensitive touch sensors was also available. One
novel use of these touch sensors involved autocor-
relating pressure contours from successive touch
epochs. In this way, regular features from touch
shapes were extracted and used as another form

of input to the structure-controlling mechanism.

The synthesis system was a hybrid one—i.e,, digi-
tally controlled analog synthesis hardware—con-
sisting of Buchla 200 Series modules and a Music
Easel. The control voltages for these were generated
by the minicomputer. In addition, a system was de-
vised wherein Music Easel patches could be stored
and sct up by the minicomputer so that the system
could be reconfigured very rapidly. The structure-
generating mechanism was stochastic in nature,
the global variables of which were set by the struc-
ture-controlling mechanism. Gaussian distributed
random values were generated and assigned to sev-
eral parameters for each of about five voices in the
synthesis system. The variances in these values
were relaxed or tightened according to directives
from the structure-controlling mechanism. The
mean values of these parameters were initially
allowed to move according to a random walk al-
gorithm at a rate somewhat slower than that at
which discrete values were generated. This consti-
tuted a second level of control in the structural
hierarchy, These mean values, however, would
eventually be constrained by the structure-
controlling mechanism.

The model of musical perception represents a
major addition. Its purpose in this version was to
make predictions about the arousal value of types
of changes in various acoustic parameters of the
musical voices. This was assumed to be strongly re-
lated to the likelihood that shifts of attention on
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the part of the perceiving, interacting entity—the
human performer—would accompany such para-
metric changes. Control signals applied to pitch,
amplitude, envelope duration, and timbral com-
plexity—as measured by modulation index, the
bandwidth of a filter being imposed on complex
waveforms, and a nonlinear waveshaping parame-
ter in the Music Easel oscillators—were tracked
and analyzed according to a unidirectional, rate-
sensitive (URS) difference detector. This URS model
is based on assumptions about the behavior of sen-
sory input channels in the nervous system (Clynes
1972). It can be expressed as follows:

D(t) « |P'(t)'(¢) if | P'(¢)]'(t) = O, else D(t) « 0.

A simple, discrete-time version of this can be im-
plemented by performing:

D(t) «|P(t) = P(t=1)| = |P(t=1) = P(t-2)|
and then:
if D{t) < 0, then D(t) « 0,

where D(t) is the difference function applied to
successive values of an acoustic parameter P. If
D(t) is greater than zero, then the element at P(t) is
considered to be a potential initiator of a shift in
attention. The value.of D(t) indicates the relative
strength of the element at P(t) as an initiator. A
threshold value T was set with which to make a
determination about a particular element as an ini-
tiator. If a threshold crossing of D(t) occurred, its
value could then be compared with corresponding
values from other parametric contours to determine
if this element will be predicted to initiate the
forming of a group on the next hierarchical level of
perception, made up of lower-level musical ele-
ments. The most important quality of this function
is that it is sensitive to changes of rate-of-change in
the positive direction. This follows the observation
about the nervous system’s reaction to incoming
sense data—that it is most sensitive to increases in
the rate-of-change of some aspect of the environ-
ment. For example, the most sensitive situation
would be a departure from a state of relative rest,
that is, something starts to move or starts to move
at a faster rate.

In this, still early version of On Being Invisible,
time steps were simply considered to correspond to
the occurrence of envelope triggers. Changes in en-
velope duration—roughly analogous to element or
note duration—were considered simply to comprise
another parametric contour. Later versions refined
this considerably. Values of D(t) from the several
parameters of each voice were summed and tested
against an overall threshold T. The current value of
D(t) above the current threshold level was used as a
measure of the strength §, as follows:

S=D(t)-T.

Here § is the strength of the prediction being
made by the model of musical perception that the
event in question would be an initiator, and that it
would be attention securing. This prediction would
then be tested by interrogating the inupt analysis
system to see if evidence of attention shift was
present in the EEG, Significant EEG desynchroniza-
tion, interruption of ongoing coherent waves, and
various EEG state changes all contributed to this
determination. See Rosenboom (1989) for more in-
formation about this. The structure-controlling
mechanism was responsible for making the deter-
mination. If the prediction was confirmed, then the
probability was increased that the kinds of change
in musical parameters associated with the predic-
tion would occur again. If the prediction was de-
nied, then the probabilities associated with these
kinds of change was decreased.

The structure-controlling mechanism was also
responsible for updating the model of musical per-
ception. At the beginning of a session the threshold
T was initialized to zero, guaranteeing that the first
event would be an initiator. On the occurrence of
an initiator—i.e., a prediction concomitant with a
successful measure of attention shift as seen in the
EEG analysis— T would be set equal to D(init),
the difference function value associated with the
initiator, This T would be applied at D(init + 1).
Thereafter, T was allowed to float according to an
accumulating time average of D(t) values with lim-
ited history, i.e., number of samples contributing to
the average. T was always reinitialized on the oc-
currence of a successful initiator to equal D(init),
and D(t) values prior to a given initiator were not
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Fig. 6. Application of the
difference function to

a simple parametric
contour.
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" included in the new average calculation. This pro-
duced a behavior for T consisting of an upward step
immediately subsequent to the occurrence of each
successful initiator, followed by a decay, the rate of
which depended on the activity of P after the ini-
tiator. The assumption was made that events fol-
lowing an initiator would be grouped with that
initiator into a perceptual unit and that a succession
of initiators would mark off a sequence of these
units. Such perceptual units have been described
by Tenney (1988) as temporal gestalts (TGs)
(Tenney 1988). -

The application of this difference detector and
threshold-updating mechanism to simple melodic

‘sequences is illustrated in Fig. 6. Here the initiators
parse the note series into groups or chunks. In Ten-
ney’s terminology, the notes would be termed ele-
ments, the note groups or chunks clangs, and a
string of clangs a sequence. From there, any num-
ber of higher ordered sequences may combine, until
the highest TG level of interest—known as the
threshold of formal concern—is reached.

Further Refinements: Real-Time, Convergence and
Divergence of Patterns

In subsequent versions of On Being Invisible, many
refinements were made. First, the ability to account
for the flow of real-time was added. This replaced
the arbitrary use of element (e.g., note) envelope
triggers to mark off a sequence of time steps. Thresh-
old levels T were no longer time-averaged after the
occurrence of an initiator. Rather, they were sub-
ject to an exponential decay, the rate of which was
adjusted to maximize the effectiveness of the sys-
tem. This decay rate is analogous to the persistence
of perceptual phenomena to which attention is
shifted in the nervous system and the tendency for
these to mask the effects of smaller events in the
immediately succeeding time vicinity, as shown in
Fig. 7. Remember that an event here is defined as a
unidirectional (increasing) change of rate-of-change
D(t) in some parameter P(t) that is of sufficient
size to cross a threshold T and which successfully
initiates a shift of attention, the evidence for which
is extracted from the ongoing EEG. This process—
combined with the exponentially decaying thresh-
old—takes care of an important effect of duration.
The longer the duration of an element for which a
given parameter is unchanging (for example, a long
sustained pitch), the smaller the subsequent change
in that parameter that will be required to produce a
threshold crossing event and, thus, an initiator is.
See Fig. 7 for a sketch of the behavior of T with
exponential decay.

The initiator strength factor S (as defined above)
was brought into play to serve as a measure of con-
fidence level for predictions. This could be used to
determine the degree of change brought about in
the stochastic structure-generating mechanism in
response to feedback. The structure-control mecha-
nism has two objectives. The first is to increase the
probability that the kinds of musical change associ-
ated with successful predictions will recur. Thus, if
certain changes continue to evoke attention shifts,
they will converge into patterns. The second objec-
tive is that if predictions are unsuccessful, the mu-
sical structure is made more open to stochastic
influences. Consequently, if successful predictions

Computer Music Journal



Fig. 7. Effect of exponen-
tial decay of the threshold
function T(t) on initiators
in successive time regions.

Successful initiators, (reset T)

Y 1)
J

D(t) —>»
|difference function)

associated with ongoing patterns begin to fail, the
patterns are allowed to diverge—to evolve by means
of random mutations into new patterns or possibly
to be dissipated entirely. Previously successful ini-
tiators can fail for a variety of reasons. Repeating
patterns may fail to elicit attention shifts because
of boredom, volitional shifting of attention focus to
other patterns or aspects of the environment, vo-
litional redistribution of attention, distractions
from the external or internal environment, shifts in
states of consciousness, and many other factors.
The structure-control mechanism used § to direct
the rate of convergence or divergence of patterns.
If a high-$ prediction was successful, convergence
to repeating patterns was more rapid than if a
low- S prediction was successful. Correspondingly, a
high-§ unsuccessful prediction would cause rela-
tively rapid divergence and a low- S unsuccessful
prediction would cause less rapid divergence.
Convergence and divergence is achieved by ad-
justing variables in various stochastic canons. For
example, to create divergence with a Gaussian dis-
tributed canon, the range could be widened and the
mean allowed to wander according to a random
walk with increasing variance. Convergence could
be created by restricting the range and variance or
by narrowing the window size of a filter applied to
the output of some random generator. Convergence
was also dependent on processes used to build hier-
archical structures.

Hierarchical Structure Building
At a certain point in a session or performance of

On Being Invisible, the performer could activate a
hierarchical structure-building part of the struc-

ture-control mechanism. Usually, the performer
would use his or her discretion in judging when
this was appropriate. At the outset of a performance,
it made sense to keep things simple, with converg:
ing and diverging processes focused on just one
structural level. This way, the biofcedback pro-
cesses involved could be clearer and more evident.
Further on, however, it would usually become de-
sirable to interact with an evolving musical en-
vironment of increasing richness. To accomplish
this, the structure-control mechanism could be di-
rected to store sequences of parametric values that
were delineated by successful initiators, These cor- .
respond to what Tenney describes as clangs, with
the exception that the On Being Invisible system
stored all parametric sequences separately—a pitch
sequence was stored separately from its associated
amplitude, timbre, and duration sequences. These
were not kept bound to each other a priori. Conse-
quently, parametric sequences could be recombined
with those of other clangs to create transformations
up to the limit of the available combinatorial pos-
sibilities. This recombination potential was made
available to the performer to select at will. The de-
fault behavior was that parametric sequences from

a given clang remained bound, unless otherwise
indicated. Each parametric clang was labeled and
assigned a probability value determining its likeli-
hood of being replayed exactly as stored. The per-
former triggered the system as to when to begin
filling memory with clangs and when to stop.

Musical Inference

The hierarchical structure builder contained the be-
ginnings of a simple musical inference engine, but
one with a difference. It had to make predictions
“on the fly” as to how a growing, evolving structure
was being perceived. Again, on a trigger from the
performer, the model of musical perception shifted
its prediction process to the second hierarchical
level of the growing musical structure. At this point,
the nature of the prediction process changed. An
analysis of the sequence of clangs was carried out,
inspired originally by concepts from information
theory. i
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Edgar Coons and David Krachenbuehl published
a stimulating paper in 1958 in which a method was
presented for quantifying the information value of
events in a sequence—with particular reference to
musical structure (Coons and Krachenbuehl 1958).
Rather than being based on probability values as-
signed a priori to events from a repertoire of possible
events——as would normally be the case in tradi-
tional information theory analyses—this method
-.involved tabulating all possible predictions that
could be made at a particular point in an event
stream and then calculating the degree to which
each prediction is nonconfirmed by the events that
actually take place. A notion of structural hierar-
chy was also contained in these calculations. Not
only were predictions for specific events examined,
but predictions involving the occurrence of dis-
similarity (maximally informed events) versus simi-
larity (minimally informed events), along with
sequences of these, were also taken into account.
Initially, I tried to incorporate a variant of this
method into the On Being Invisible programs. A
practical problem prevented a full realization, how-
ever. The analysis method of Coons and Kraehen-
buehl produces considerable insight into the nature
of patterns and how they might be perceived. Dur-
ing real-time algorithmic musical performance
situations, however, the computations required by
this method can soon grow out of hand. A full-scale
analysis of this type requires tabulation of all pos-
sible predictions that can be made at a given point
in a piece on the basis of past events. This is ne-
cessary in order to be able to arrive at a relative-
informedness value for the event that eventually
does take place. In even moderately complex mu-
sic, this can involve an enormous number of pos-
sible predictions. Although the actual calculations
are quite simple, their number becomes unwieldy
for small computers and the memory requirements
become quite large. Furthermore, the results must
be obtained very quickly in order to keep up with
a spontaneously emerging and evolving musical
fabric.

Fortunately, another set of stimulating experi-
ments was carried out in the Cognitive Psycho-
physiology Laboratory at the University of Illinois
at just the right time (Squires et al. 1976}, This

study showed enhancements in the amplitudes of
two important peaks—known as N200 and P300—
and late, slow-wave components of ERPs for par-
ticular stimuli as a function of their position in a
sequence of events. Furthermore, a relationship
was shown between the contents of the sequence
preceding the event in question and the degree to
which that event was a discriminant one associated
with large ERP amplitude peaks. This depended on
developing an expectancy function associated with
each event, bearing an important conceptual rela-
tionship to the Coons and Krachenbuehl method of
tabulating predictions. This expectancy function
was derived from the linear combination of a mem-
ory function for past events, a probability value as-
sociated with each particular stimulus type, and an
alternation factor. The alternation factor reflected
an attempt to take into account the effects of simple
hierarchical groupings perceived by the subject.
This study dealt only with sequences of two event
types, and was therefore limited in its applicability
to complex music. Nevertheless, a modification of
ideas from these two studies led to a practical im-
plementation of an information /expectancy func-
tion algorithm for hierarchical musical patterns
used in On Being Invisible.

As mentioned above, the system begins to store
clangs when triggered by the performer. At this
time, each clang is labeled and assigned a proba-
bility value P initially at random. Clangs are then
played back stochastically, their probability values
being affected by the degree of attention shift they
seem to elicit in the EEG signals. High attention
shift when a clang is played will result in increas-
ing that clang’s probability value, enhancing the
likelihood that it will be played again. At the same
time, the system begins to group clangs into se-
quences. A record is kept of the order in which
clangs are played. A memory/expectancy function
is evaluated on each clang playing. The form of
the memory/expectancy function is adapted from
Squires, et al. as follows:

)3 aN-1s,

i=N=1

where M,y is the memory/expectancy function for
event E at position N as a function of the sequence
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Fig. 8. lllustration of the
hierarchical structure
builder operating on a

simple string of events,
_..= Groupings continue as
_.»=="""  information unfolds.
Sequences, level 2 A" B"
E 0 0
m 0 1
Pred. A" d B"
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E
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Note: E = expectancy values, shown as 0, »0, or »0 for simplicity; m = memory order factor; Pred. = predictions made
at particular points; d = disconfirmations of predictions. Dashed lines indicate shifts in the hierarchical level on which
information processing proceeds. Note that for an event to initiate a higher level grouping, its expectancy value must
exceed a threshold, Te; though, not all such events will produce initiators unless other conditions are also met.

of past events §,. As the algorithm runs, §, is set
equal to zero if the event at the current index i is
not equal to E and set to one if it is equal to E, An
exponential decay of memory for past events re-
sults from the evaluation of a where0 = a=< 1. A
memory order factor m is used to determine how
far back in the sequence to go when calculating the
* expectancy function for a given position in the se-
quence. Various values of m were chosen purely
experimentally for different On Being Invisible ses-
sions. It is assumed that the probability values re-
flect relatively global aspects of the sequence, while
the mémory/expectancy function corresponds to
stimulus processing in more short-term memory.
Perhaps a good way to describe this algorithm is
to examine: its operation on the simple example il-
lustrated in Fig. 8. Consider the following primitive
- sequence of three events, or musical objects, simply

labeled, A, B, and C, which we will call clangs.
Higher order groupings of clangs will be called
sequences.

ABCABCABCCBAABCCBAABCABCA...

Initially, this ordering would be the result of
making selections from the three stored clangs
simply by applying assigned probabilities for their
occurrence. For the purposes of this example, the
sequence has been made more regular than would
probably be the case at first. We will assume that
the likelihood of detecting ERP or other EEG pa-
rameters indicative of shifts in selective attention
will be associated with predictions {made on the
basis of past experience) being disconfirmed, i.e., .
their expectancy function is low and their global
probability of occurrence is low. The detection of
such attention shifts will be used to cause objects
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to be labeled as initiators of higher level groupings.
Note that simple, regular sequences—like that
shown in this example—tend to produce well-
ordered, hierarchical structure trees. In actuality,
such well-ordered trees tend to be less interesting
than not so well-ordered trees.

Event A is of course an initiator by default. The
only prediction that can be made on the basis of
experience accumulated in the system so far is that
A will recur. Consequently, the occurrence of B is
disconfirming, as is the next event, C. Expectancy
values for all these events are zero at this point.
The memory order parameter (m) grows with the
length of the pattern being analyzed. On the second
occurrence of A, a nonzero expectancy value is ob-
tained. It is compared with an expectancy threshold
set experimentally in order’to tune the behavior of
the algorithm. A threshold crossing triggers the al-
gorithm to attempt the formulation of a higher
level grouping—a sequence in this case—and to
move the level of its analysis up. All clang objects
encompassed by the memory order parameter, up to
but not including the current event, are gathered
into a tentative proposal for a higher-level sequence
grouping. It is labeled A’ and assigned a probability
value for its recurrence. A memory order parameter
is kept and updated for each hierarchical level in
the unfolding structure.

Now the algorithm operates on the next hierar-
chical level above the clang. A tentative prediction
is made that A’ will occur again. Actually, this is
the only prediction that can be made at this point
on sequence level 1. The order of subsequent clangs
is then compared with the contents of A’. After the
second ABC group occurs, the tentative prediction
about the recurrence of A’ is confirmed. The expec-
tancy value for this second A’ is nonzero. However,
only one type of event has yet occurred on this first
sequence level, so no higher-level grouping is pos-
sible. Note that a higher-level grouping must con-
tain at least two different kinds of objects. In other
words, the repetition of the same object over and
over is not considered to produce candidates for

higher-level pattern groupings. A second kind of ob-.

ject must occur to act as a pattern delimiter.
A prediction for the occurrence of another A’ is
made. This one is also confirmed, so yet another A’

is predicted. The expectancy values for A’ are grow-
ing. However, on occurrence of the next clang (C),
this prediction is immediately disconfirmed. Now
the algorithm must drop its level of analysis back
down to the clang level. The memory order parame-
ter {m) for clangs, which has been growing from the
beginning of the first clang, is reset to zero, refer-
encing the beginning of what may eventually be-
come a new sequence grouping. As was the case at
the beginning of the whole sequence, the only pre-
dictions that can be made are for the recurrence of
each clang, the expectancy values for which are all
zero. On the fifth occurrence of A, however, a non-
zero expectancy value is obtained, and again the
preceding clangs, up to the limit of m, are gathered
into a tentative sequence grouping and labeled B'.
The algorithm returns to the first sequence level
again and predifts another A’, the strongest pre-
diction it can make at this point. This prediction
is confirmed by the occurrence of the next three
clangs, ABC. Now, a second-level sequence group-
ing can be made because we have had two types of
events on the sequence level 1, A’ and B'. Events
on this level are then collected up to the limit of
m, forming the group A’A’A’B’. We can now move
up to the second sequence level, label the group A",
and assign it a probability. The tentative prediction
of a second A" is made. The occurrence of the very
next clang (C), however, immediately disconfirms
this. The algorithm must drop back down one level
and make another prediction. We already know at
this point that the ensuing sequence cannot be A’.
So we predict a sequence with the next highest ex-
pectancy, B’. Subsequent clangs confirm it. The
next A' will trigger a second-level sequence group-
ing (A'B’) with just two objects if the expectancy
threshold is set to facilitate this. It is labeled B” and
given a probability. The last A’ does disconfirm the
prediction of another B", but it cannot trigger a new
grouping because only one type of object has oc-
curred since the last second-level sequence was
formed. No further groupings can be made until
more information is provided by the continued un-
folding of the main sequence.

Transition probabilities can also be used in build-
ing the structural hierarchy. As the system moves
up to higher and higher levels of grouping, nth-
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order transition probability tables (Markov chains)
can be built to reflect the likelihood that particular
clangs or sequences will tend to follow each other
or remain bound in high-level groupings. The prob-
abilities in this table can be skewed by successful
detections of attention shifts to increase the likeli-
hood that particular transitions will recur, or by
unsuccessful tests to decrease the corresponding
transition probabilities. This method alone, how-
ever, is not sensitive to certain kinds of attention-
securing events that do not reflect grouping bounda-
ries. For instance, attention shifts can be stimulated
by events that represent the occurrence of incon-
gruous or surprising endings of groups as well as
the beginnings of new groups. It is sometimes diffi-
cult to tell—on the basis of EEG concomitants of
attention shift alone—on which side of a grouping
boundary a particular event lies. Consequently, fur-
ther inference rules are required.

Inference Rules and Musical Knowledge

A retrospective analysis of the primary sequence
may suggest alternative groupings. It is important
to recognize that many such alternatives result
from an out-of-time analysis. The kind of groupings
produced by this algorithm result from what can be
known at each point in the sequence as it unfolds
in time. One significance of the hierarchical level
on which the algorithm operates at a given time is
that this level represents what we know at that
time about the structure of the sequence. Experi-
enced listeners apply many strategies of analytical
listening based on a large knowledge base contain-
ing information about musical structure and musi-
cal transformations. This algorithm doesn’t know
about things like retrogrades, inversions, transfor-
mations on parametric contours, etc. If it did, the
range of predictions about musical objects in an un-
folding structure would be considerably widened.

In addition, one could design a system that used
knowledge about sequences of global features. For
example, if the ABC labels used in this example re-
ferred to actual note names (elements), then clangs
on the next hierarchical level could be labeled as to

their sequence of ascending or descending pitch
content, i.e.,

up, up, up, down, up, down, up, up, . ..

In the preceding example, these labels were meant
to represent musical objects or events, the contents
of which are undetermined. Consequently, they
were labeled clangs to suggest that each may con-
tain lower-level formal features.

We can now list several important pnnciplcs or
rules on which this structure builder operates.

Principle: The system always attempts to operate
on the highest level of hierarchical grouping
possible in order to obtain a description of the
most global features of the unfolding patterns.
These are assumed to have the highest predic-
tive value.

Rule: Any event for which the expectancy
function is above a threshold is considered
to be a potential initiator of a new sequence
grouping.

Rule: A sequence grouping must contain at
least two event types.

Principle: A search for attention shifts via con-
comitant EEG phenomena is triggered by dis-
confirmation of predictions at the current hier-
archical level and by events for which expec-
tancy values are low.

Rule: Successful detection of attention shifts
results in increasing the global probability
that the currently referenced sequence group-
ing or—if possible—the newly formed se-
quence will recur. If a triggered search for
attention shift is unsuccessful, the corre-
sponding probability is reduced.

A result of this last principle is that as attention
shifts are followed, musical patterns will continu-
ously converge and diverge from ordered relation-
ships; musical contexts will appear and dissolve. In
a way this is hardly any different from the way
music naturally evolves. In this case, however,
the potential for such evolution is imbedded in
the structure of an artificially intelligent musical
instrument.
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Global Parametric States

é Mc analysis of parametric values via the difference

““#fanction—referred to as D(t) above—continues on
*.the second and subsequent hierarchic levels as well,
but with a difference. Here we look at changes in
. the global qualities for each parameter of a clang—
what Tenney calls state variables—instead of the
individual element values. These are the averages
of the parametric values for the elements of a clang,
‘adjusted to reflect element durations, following
Tenney's suggestion:

parametric values * durations

$ i durations

The difference detector now signals increases in
the rates-of-change of these global variables. This
is particularly useful in making predictions about
shifts in attention concomitant with offsets in one
or more global variables, such as pitch transposi-
tion or changes in the loudness or timbre of an en-
tire clang. Under this kind of transposition, clangs
retain their labels—a transposed clang-A is still
considered clang-A for purposes of calculating the
expectancy function described earlier. However, the
difference detector will always catch significant
changes in a state variable and make predictions.

Parametric Weighting

A significant problem in temporal gestalt (TG) analy-
sis involves the question of parametric weighting.
How important is a change of a given size in one
parameter in relation to another (e.g., pitch vs. loud-
ness) in determining where to predict TG bounda-
ries? In traditional Western music, pitch tends to be
the parameter assumed to carry most of the infor-
mation articulating form. This assumption cannot
be made for twentieth-century Western music or
for many other kinds of music. Tenney points out,
for example, that in the music of Edgar Varése, TGs
are delimited more by amplitude events than pitch
(Tenney 1988). The solution in general is empirical —

one must adjust the weighting values until the
model behaves as one thinks it should. Parametric
weights vary substantially in different contexts,
particularly with respect to relative degrees of vari-
ance among parameters. The On Being Invisible
system offers potential as an interesting tool with
which to explore how parametric weighting seems
to work. A time-record of the self-adjusting, differ-
ence detector thresholds (T(t)) for a set of parame-
ters provides an indicator of how such weights shift
through a musical experience. High thresholds in a
given parameter (e.g., loudness) indicate that rela-
tively large changes in the rate-of-change of loud-
ness are required for it to be effective as a formative
parameter for perception in the particular musical
context being examined.

Psychophysiological Parallels of TG Analysis A

Another potential of this system is offered in the
possibility of carrying out research into the psycho-
physiological parallels of TG analysis in musical
form perception. To date, at least some preliminary
work has been carried out, and rich possibilities for
investigation remain. One may apply the system to
the investigation of form perception in precom-
posed, fixed musical works by using only some
parts of the On Being Invisible feedback loop—the
model of musical perception and the input analysis
system. Instead of a spontaneously generated musi-
cal structure, a precomposed, fixed one is produced.
A time history of the results of the analysis could
then provide the parallel data. Furthermore, it is
very interesting to begin with a fixed composition
rather than with a random starting point, and to
allow the fixed structure to evolve according to the
self-organizing behavior of the complete system.
Surprising aspects of the way musical attention be-
haves often result in fascinating transformations of
the initially fixed original. The focus of musical at-
tention traverses a structural landscape in complex
and possibly even highly individual ways. A wealth
of experience is required to make even partially ac-
curate predictions about how a particular formal ar-
chitecture will be perceived. Observing the behavior
of a system such as the one delcnbed above often
reveals inspiring surprises.
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Algorithmic Improvisation with ERPs
and Other Inputs

Although inspired by investigations into models of
perception and musical cognition, the above system
is not the result of an attempt to create an artificial
listener that behaves exactly like a human listener.
Instead it is an interesting generative musical tool
with which to produce creative results. As such, it
has been subjected to continuous refinement, modi-
fication, and expansion to serve new goals and re-
flect evolving knowledge and insight.

Since the use of this system in On Being Invis-
ible involves a real-time evolution of both performer
and musical system, it is representative of a form of
musical improvisation. Placing the system inside
a group context involving improvisation with an
attention-dependent sonic environment can be
quite exciting—though results can often become
very complex. In addition, the methods of input
signal analysis—originally focused on the EEG—
can, with minimal modification, be applied to other
inputs as well. This has been tried with other phys-
iological signals, such as touch contours and EMG
signals, and even with acoustic signals. In these
contexts, this system functions as an intelligent
musical instrument, capable of high-level pattern
. generation in response to several types of input sig-
nal analysis or gesture capture. Feedback directing
the ongoing evolution of the system’s hierarchical
structure-generating capability can come from a va-
riety of sources. We have focused on feedback from
_aspects of attention shift. These can also come
from simple performance actions, deterministically
given by the performer in order to push the system

in one direction or another. All of these are legiti-
mate applications with rich musical potential,

Current Technical Issues and Future Prospects

The architecture, speed, and memory capacity of
affordable computers is now approaching that re-
quired to realize the entire system described here
cificiently. Even with modern high-speed micro-
processors, however, a certain degree of parallelism
is desirable. The computing required by the sys-

tems I have described falls mainly into three cate-
gories: (1) signal analysis, (2) musical structure
generation and, (3) sound synthesis. Each of these is
quite complex and ideally should be performed by
independent parallel processors.

The EEG and MIDI

The synthesis equipment described in some of the
1970s examples above could be considered some-
what old-fashioned by today’s standards. However, |
want to stress the indisputable fact that some of
the expressive power achieved with these older ma-
chines is yet to be matched with modern digital
equivalents, even though these newer instruments
have vastly greater potential in terms of numbers of
voices and the ability to store many patches, pro-
grams, and waveforms. The proper realization of a
work like On Being Invisible II requires.indepen-
dent addressing and continuous updating of all syn-
thesis parameters in real-time. This is very difficult
to achieve in a MIDI environment. To further exac-
erbate the problem, the EEG analysis system must
have precise knowledge of exactly when changes in
multiple sound parameters occur in order to co-
ordinate its analytical procedures with musical
structure-generating mechanisms. Without this in-
formation, the resulting data will have little rele-
vance to actual musical perception and cognition.
Transmission delays imposed by MIDI, and the in-
ability to interrogate many MIDI synthesizers as to
when certain synthesis processes occur, present se-
rious hurdles to overcome.

The idea of an EEG-to-MIDI interface is a titillat-
ing one to be sure. This has been achieved both in
our laboratory at the Mills College Center for Con-
temporary Music and in my private studio, as well
as by others. See Knapp and Lusted (1989) for a de-
scription of their Biomuse system. In and of itself,
this is a rather trivial development. A small per-
sonal computer equipped with a low-speed, low-
resolution, analog-to-digital converter, a MIDI inter-
face, and some simple software, along with a good
EEG preamplifier, is the simplest way to accom-
plish it. The difficult part lies in how to extract
truly meaningful data that bears a direct relation-
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ship to the production of musical sound from EEG
signals. Though brainwave control of MIDI devices
can certainly be fun, my experience leads me to

_issue a strong cautionary message to those who
wish to use this method and who expect to obtain
results with the precision required to produce data
upon which conclusions about musical information
processing can be based.

The EEG and DSP

DSP co-processors, which can perform nearly in-
stantaneous updating of digital synthesis parame-
ters such.as those found on the Digidesign Sound
Accelerator card or in the NeXT computer, offer
strong potential. However, it is still very difficult to
implement all thre¢ of the major computation tasks
listed above within one typical commercially acces-
sible personal computer and still expect to keep the
tight tirning constraints under control. At the Cen-
ter for Contemporary Music, plans are being made
to construct a general purpose DSP input peripheral
device capable of implementing some of the EEG
signal preconditioning and analysis algorithms.
This will further relieve some of the timing con-
straints that result from trying to run both the EEG
analysis and musical structure-generating programs
on a single computer. My experiments are presently
being conducted with the aid of the Apple Macin-
tosh Il computing platform, Digidesign Sound Ac-
celerator cards using the Motorola 56001 DSP chip
as a co-processor, a data acquisition system from
GW Instruments, and various MIDI devices. There
is often simply no substitute for an analog syn-
thesis module capable of instantaneous response
upon receipt of a computet-gmeuted voltage step
or trigger.

Techniques for Brain Imaging

Other technical developments on the near and far
horizons are very exciting indeed. These include
advances in multichannel, topographic mapping of
electrical activity in the brain, often reférred to as

brain imaging, and the application of superconduct-
ing quantum interference devices (SQUIDs) to the
detection of localized neuromagnetic fields. Other
techniques being used in research and medicine
include:

Positron Emission Tomography [PET), which maps
the flow of radioactively tagged blood in the
brain as different regions become activated

Magnetic Resonance Imaging (MRI), which re-
cords radio waves resulting from the realigning
of molecules in the body when it is placed in a
strong magnetic field

Computerized Tomography (CT), which uses
X-rays

EEG Expert Analyst and Musical Inference Englne

Advances in software, particularly in the field of ex-
pert systems, may prove useful for the types of ap-
plications described here. The detailed knowledge
we now have about the dissection and categoriza-
tion of EEG phenomena could be coded into the
knowledge base of an EEG analysis expert system.
This could then be linked to a musical inference
engine containing rules for musical production and
a model of perception. The musical rules would
include provision for describing compositional in-
tent, aspects of what constitutes a multilevel for-
mal architecture, and a set of transformation be-
haviors with which to implement morphological
dynamics. The model of perception would require
rules for musical feature extraction, detection of
the boundaries separating temporal gestalts, and
perceiving holarchic form.

Such an integrated, feedback-based, self-orga-
nizing system could become a powerful tool for ex-
plorations in composition, performance, and percep-
tion, as it includes an expert signal analyst (herein
focused on the EEG), a musical inference engine, a
synthesis mechanism, and an intelligent perfor-
mance input structure. Figure 9 shows a potential
organizing scheme for it. This goal is furthermore
imminently achievable with existing affordable
technology.
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Fig. 9. Potential organiza-
tion of an intelligent input
analyst and musical ex-
pert system/inference en-
gine for live performance.
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On Being Invisible Il

It is now possible to imagine large-scale musical
theater or operatic works involving biotelemetric
presentation by human and even nonhuman per-
formers interacting with audiences, other perform-
ers, and environments. This could create a syner-
gistic theater, linking participants in a large-scale
organism, the ontology of which could provide a
script of mythical proportions. The eternal quest to
understand the role of human consciousness in de-
termining when and how to initiate action provides
the essential dramatic tension. This is the grand
intent of my ongoing project, currently titled On
Being Invisible 1. In this work, the major compo-
nents of the feedback system shown in Fig. 9 have
become anthropomorphized and are taking on the
aspects of characters in a mythological scenario

for evolution and social organization. From this, a
script is being developed, the intent of which is to
place the work in the context of a full-scale, the-
atrical performance. I await adequate time and sup-
port for its full realization.
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